Pascals lag säger att när trycket vid någon punkt i en statisk vätska i ett slutet system ändras, kommer tryckändringen att spridas lika i vätskan. Det vill säga att trycket vid en punkt långt bort från förändringsområdet kommer att förändras med samma mängd som en punkt i närheten. Ett slutet system kan helt enkelt vara en sluten behållare, eller det kan vara något mer komplext, såsom två eller flera sammankopplade behållare; det viktiga är att ingen vätska kan komma in i eller lämna systemet. Det är också viktigt att notera att i fysiken kan en vätska vara antingen en vätska eller en gas. Lagen kan påvisas genom ett antal enkla experiment, och har viktiga tillämpningar, såsom i hydraulpressen.
Principen fick sitt namn efter den franske matematikern och filosofen Blaise Pascal som upptäckte den på 1600-talet. Det gäller statiska situationer och inte dynamiska förhållanden där andra faktorer kan påverka tryckvärdena. Det gäller till exempel inte vätskor som är i rörelse eller utsätts för växlande temperaturer.
demonstrationer
Det finns en mängd olika Pascals lagexperiment som kan användas för att demonstrera effekten. Pascal själv visade att det fungerade genom att fylla en tunna med vatten och föra in ett långt rör i toppen. När han hällde vatten i toppen av röret sprack tunnan. Tyngden av vattnet i röret orsakade en ökning av trycket inne i pipan som tryckte mot sidorna tills de gav vika.
Det kanske mest grundläggande sättet att demonstrera lagen hemma är att helt enkelt klämma en ballong. I detta exempel visar behållarens flexibla väggar hur tryckökningen som orsakas av klämning sprids genom ballongen. Ballongen kommer att bukta jämnt i alla riktningar, inte bara på den sida som är motsatt den som kläms.
I en annan vanlig demonstration fylls en flaska till toppen med vatten och några tändstickshuvuden tappas ner i den så att de flyter. Halsen på en uppblåst ballong sträcks över flaskan och pressas sedan lätt. Tändstickshuvudena sjunker nu en bit ner i vattnet. Detta beror på att tryckökningen på grund av ballongens klämning överförs ner i vattnet, vilket tvingar in en del av det i de porösa tändstickshuvudena och får dem att sjunka, på grund av den extra vikten. När trycket på ballongen tas bort minskar vattentrycket, lufttrycket i tändstickshuvudena tvingar ut vatten och de flyter igen.
Tillämpningar
Den kanske mest kända tillämpningen av Pascals lag är den hydrauliska pressen, en anordning som omvandlar en liten kraft till en större. Den består vanligtvis av två sammankopplade kammare, var och en med en kolv – en rörlig barriär som kan tryckas ner eller dras upp utan att tillåta vätska att strömma ut – och som innehåller en vätska som inte kan komprimeras. En kombination av kammare och kolv är större än den andra: det här är ”utgången”. Tanken är att en liten kraft som appliceras på den mindre kolven, eller ”ingång”, kommer att resultera i en större utgående kraft. Att trycka ner ingången ökar trycket, och den ökningen blir densamma mot den större utgående kolven.
Beräkna uteffekten
Utgångskraften beräknas genom att dividera arean av utgående kolv med arean av ingångskolven och sedan multiplicera resultatet med ingångskraften. Om utgångskolven har tio gånger arean av ingången, kommer utgångskraften att vara tio gånger ingångskraften. Till exempel, om ingångskraften är 5 enheter, inmatningsarean är 2 enheter och utmatningsarean är 20 enheter, blir uteffekten 50 enheter. På så sätt kan tunga föremål lyftas utan att det behövs en stor kraft.
Detta betyder inte att extra energi dyker upp från ingenstans. Mängden med vilken utgångskolven höjs kommer att vara mindre än mängden med vilken ingångskolven trycks ner, vilket jämnar ut saker och ting. I exemplet ovan, om ingångskolven trycks ner 10 enheter, kommer utkolven att höjas med 1 enhet. Principen liknar att använda en spak för att lyfta en sten. Hydrauliska mekanismer av många typer, såsom bromssystem på flygplan och vissa fordon, förlitar sig på Pascals lag.